Operation CHARM: Car repair manuals for everyone.

P0135












Circuit Description

Heated oxygen sensors are used to minimize the amount of time required for closed loop fuel control operation and to allow accurate catalyst monitoring. The oxygen sensor heater greatly decreases the amount of time required for fuel control sensor HO2S 1 to become active. The oxygen sensor heater is required by catalyst monitor sensor HO2S 2 to maintain a sufficiently high temperature. This allows accurate exhaust oxygen content readings further from the engine.

The PCM will run the heater test only after a cold start (determined by engine coolant and intake air temperature at the time of start-up) and only once during an ignition cycle. When the engine is started the PCM will monitor the HO2S voltage. When the HO2S voltage indicates a sufficiently active sensor, the PCM looks at how much time has elapsed since start-up. If the PCM determines that too much time was required for the HO2S 1 to become active, a DTC P0135 will set. The time it should take the HO2S to reach operating temperature is based on the engine coolant temperature at start up and the average Mass Air Flow since start-up (higher average airflow or higher start-up engine coolant temperature = shorter time to HO2S activity).

Conditions for Running the DTC

^ No active TP, MAP, MAF, ECT, IAT, or CKP sensor, misfire, fuel injector circuit, EVAP, Fuel trim, EGR DTCs present.
^ Intake Air Temperature (IAT) is less than 35°C (95°F) at start up.
^ Engine Coolant Temperature (ECT) is less than 35°C (95°F) at start up.
^ IAT and ECT are within 6°C (42°F) of each other at start up.
^ Battery voltage above 9.0V and below 16.0V.
^ Average mass airflow for the sample period is less than 20 gm/s.

Conditions for Setting the DTC

HO2S 1 voltage remains within 150 mV of the bias voltage (about 450 mV) for a longer amount of time than it should. The amount of time varies depending on engine coolant temperature at start-up and average air flow since start-up, but will not exceed 4.5 minutes.

Action Taken When the DTC Sets

^ The PCM will illuminate the MIL during the second consecutive trip in which the diagnostic has been run and failed.
^ If equipped with traction control, the PCM will command the Electronic Brake and Traction Control Module (EBTCM) via the serial data circuit to turn OFF traction control, and the EBTCM will illuminate the TRACTION OFF lamp.
^ The PCM will store conditions which were present when the DTC set as Freeze Frame and Fail Records data.

Conditions for Clearing the MIL/DTC

^ The PCM will turn the MIL OFF during the third consecutive trip in which the diagnostic has been run and passed.
^ The history DTC will clear after 40 consecutive warm-up cycles have occurred without a malfunction.
^ The DTC can be cleared by using a scan tool.

Diagnostic Aids

Check for the following conditions:

Important: Remove any debris from the connector surfaces before servicing a component. Inspect the connector gaskets when diagnosing or replacing a component. Ensure that the gaskets are installed correctly. The gaskets prevent contaminate intrusion.

^ Poor terminal connection.
Inspect the harness connectors for backed out terminals, improper mating, broken locks, improperly formed or damaged terminals, and faulty terminal to wire connection. Use a corresponding mating terminal to test for proper tension. Refer to Diagrams.
^ Damaged harness.
Inspect the wiring harness for damage. If the harness appears to be OK, observe the sensor display on the scan tool while moving connectors and wiring harnesses related to the sensor. A change in the sensor display may indicate the location of the fault.
^ Inspect the PCM and the engine grounds for clean and secure connections.

If the DTC is determined to be intermittent, reviewing the Fail Records can be useful in determining when the DTC was last set.

Test Description

Number(s) below refer to the step number(s) on the Diagnostic Table.

2. The HO2S should be allowed to cool before performing this test. If the HO2S heater is functioning, the signal voltage will gradually increase or decrease as the sensor element warms. If the heater is not functioning, the HO2S signal will remain near the 450 mV bias voltage.
4. Checks that the ignition feed circuit to the HO2S is not open or shorted. The test light should be connected to a good chassis ground, in case the HO2S low or HO2S heater ground circuit is faulty.
5. Checks the HO2S heater ground circuit.
6. Checks for an open or shorted HO2S heater element. The heater element resistance will vary according to HO2S temperature (a hot HO2S heater element will measure a much higher resistance than a HO2S heater element at room temperature). It is important to allow the HO2S to cool before measuring HO2S heater element resistance.
11. An open HO2S signal or low circuit can cause the HO2S heater to appear faulty. Test these circuits before replacing the sensor.