Operation CHARM: Car repair manuals for everyone.

Cooling System




Cooling System Description and Operation

Cooling Fan Description and Operation

For cooling fan description and operation, refer to Cooling Fan Description and Operation (LAU) (Cooling Fan Description and Operation)Cooling Fan Description and Operation (LF1) (Cooling Fan Description and Operation).

Engine Coolant

Engine coolant is the key element of the heating system. The engine thermostat controls the normal engine operating coolant temperature. Coolant pumped out of the engine block enters the heater core through the inlet heater hose. The air flowing through the HVAC module absorbs the heat of the coolant flowing through the heater core. The coolant then exits the heater core through the heater outlet hose. To prevent the coolant from boiling after the engine is turned off an after-boil/heater coolant pump is used on the LAU turbo engine only.

The HVAC control module will command the after-boil/heater coolant pump on when the engine is off under the following conditions:

* The engine is OFF.
* The engine coolant temperature is greater than 101°C (214°F).

The above coolant flow circuits are designed to show the coolant flow related to the coolant by-pass valve positions only. The thermostat function and thermostat coolant flow paths are not shown.

Coolant Warning Messages

The radio will display the following messages if the following conditions exist in the cooling system.

* Engine hot-A/C OFF, is displayed if the coolant temperature is greater than 117°C (243°F) for domestic vehicles or 115°C (239°F) for imports.
* Engine coolant hot-idle engine, is displayed if the coolant temperature is greater than 118°C (245°F).
* Engine overheated-stop engine, is displayed if the coolant temperature is greater than 123°C (253°F).

Coolant Level Control

The low engine coolant level indicator lamp is located in, and controlled by the instrument panel cluster (IPC). The engine coolant level switch is located in the engine coolant surge tank. The switch remains open when surrounded by coolant. When the engine coolant level switch is closed for greater than 10 seconds, indicating low coolant, the IPC will turn ON the Low Coolant Indicator lamp. The lamp will also illuminate for approximately 3 seconds during the display test at the start of each ignition cycle.

Coolant Heater

The optional engine coolant heater (RPO K05) operates using 110-volt AC external power and is designed to warm the coolant in the engine block area for improved starting in very cold weather - 29°C (- 20°F). The coolant heater helps reduce fuel consumption when a cold engine is warming up. The unit is equipped with a detachable AC power cord. A weather shield on the cord is provided to protect the plug when not in use.

Cooling System

The cooling system's function is to maintain an efficient engine operating temperature during all engine speeds and operating conditions. The cooling system is designed to remove approximately one-third of the heat produced by the burning of the air-fuel mixture. When the engine is cold, the system cools slowly or not at all. This allows the engine to warm quickly.

Cooling Cycle

The thermostat is located between the radiator outlet and the water pump inlet. At normal operating temperature, coolant is drawn from the radiator outlet and into the water pump inlet by the water pump. In cold conditions, the thermostat will bypass the radiator, and the pump will draw coolant directly from the engine outlet.

Coolant is then pumped through the water pump outlet and into the engine block. In the engine block, the coolant circulates through the water jackets surrounding the cylinders where it absorbs heat.

The coolant is then forced through the cylinder head gasket openings and into the cylinder heads. In the cylinder heads, the coolant flows through the water jackets surrounding the combustion chambers and valve seats, where it absorbs additional heat.

From the cylinder heads, the coolant is then forced to the engine outlet. Coolant leaves the engine through three different routes:

1. Through the engine outlet fitting to the radiator. This path is blocked at cold conditions by the thermostat at the engine inlet fitting.
2. To the heater core for passenger compartment heat and defrost.
3. Through the vent hose to the surge tank, providing continuous direction of the cooling system.

Operation of the cooling system requires proper functioning of all cooling system components. The cooling system consists of the following components:

Coolant

The engine coolant is a solution made up of a 50-50 mixture of DEX-COOL and clean drinkable water. The coolant solution carries excess heat away from the engine to the radiator, where the heat is dissipated to the atmosphere.

Radiator

The radiator is a heat exchanger. It consists of a core and two tanks. The aluminum core is a crossflow tube and fin design. This is a brazed tube with convoluted louvered fin design. Separate tubes and fins are stacked together with a manifold at each end. The entire core assembly is then brazed forming a homogeneous unified structure. The fins allow for efficient heat transfer from the coolant to the atmosphere. The inlet and outlet tanks are molded with a high temperature, glass reinforced nylon plastic. The tank and gasket is supplied as an assembly with silicone gasket attached to the tank. The tanks are clamped to the core with clinch tabs. The tabs are part of the aluminum header at each end of the core. The radiator also has a drain cock which is located in the bottom of the driver side tank. The drain cock includes the drain cock and drain cock seal.

The radiator removes heat from the coolant passing through it. The fins on the core absorb heat from the coolant passing through the tubes. As air passes between the fins, it absorbs heat and cools the coolant.

During vehicle use, the coolant heats and expands. The coolant that is displaced by this expansion flows into the surge tank. As the coolant circulates, air is allowed to exit. Coolant without bubbles absorbs heat much better than coolant with bubbles.

Pressure Cap

The pressure cap is a cap that seals and pressurizes the cooling system. It contains a blow off or pressure valve and a vacuum or atmospheric valve. The pressure valve is held against its seat by a spring and protects the radiator by relieving pressure if it exceeds 20 psi. The vacuum valve is held against its seat by a spring, which permits opening of the valve to relieve vacuum created in the cooling system as it cools off. The vacuum, if not relieved, could cause the radiator hoses to collapse.

The pressure cap allows pressure in the cooling system to build up. As the pressure builds, the boiling point of the coolant goes up as well. Therefore, the coolant can be safely run at a temperature higher than the boiling point of the coolant at atmospheric pressure. The hotter the coolant is, the faster the heat moves from the radiator to the cooler passing air. However, if the pressure exceeds the strength of the spring, the pressure valve rises so that the excess pressure can escape. When the engine cools down, the temperature of the coolant drops and a vacuum is created in the cooling system. This vacuum causes the vacuum valve to open, allowing outside air into the cooling system. This equalizes the pressure in the cooling system with atmospheric pressure, thus preventing the radiator hoses from collapsing.

Surge Tank

The surge tank is a plastic tank with a pressure cap mounted to it. The tank is mounted at a point higher than all other coolant passages. The surge tank provides an air space in the cooling system. The air space allows the coolant to expand and contract. The surge tank also provides a coolant fill point and a central air bleed location.

During vehicle use, the coolant heats and expands. The coolant that is displaced by this expansion flows into the surge tank. As the coolant circulates, air is allowed to exit. This is an advantage to the cooling system. Coolant without bubbles absorbs heat much better than coolant with bubbles.

Air Baffles and Seals

The cooling system uses deflectors, air baffles and air seals to increase system cooling. Deflectors are installed under the vehicle to redirect airflow beneath the vehicle to flow through the radiator and increase cooling. Air baffles are also used to direct airflow into the radiator and increase cooling. Air seals prevent air from bypassing the radiator and A/C condenser. Air seals also prevent recirculation of the air for better hot weather cooling and A/C condenser performance.

Water Pump

The water pump is a centrifugal vane impeller type pump. The pump consists of a housing and an impeller. The impeller is a flat plate mounted on the pump shaft with a series of flat or curved blades or vanes. When the impeller rotates, the coolant between the vanes is thrown outward by centrifugal force. The impeller shaft is supported by one or more sealed bearings. The sealed bearings never need to be lubricated. Grease cannot leak out, dirt and water cannot get in as long as the seal is not damaged or worn.

The purpose of the water pump is to circulate coolant throughout the cooling system. The water pump is driven by the crankshaft via the drive belt.

Thermostat

The thermostat is a coolant flow control component. Its purpose is to regulate the operating temperature of the engine. It utilizes a temperature sensitive wax-pellet element. The element connects to a valve through a piston. When the element is heated, it expands and exerts pressure against a rubber diaphragm. This pressure forces the valve to open. As the element is cooled, it contracts. This contraction allows a spring to push the valve closed.

When the coolant temperature is below the rated thermostat opening temperature, the thermostat valve remains closed. This prevents circulation of the coolant to the radiator and allows the engine to warm up quickly. After the coolant temperature reaches rated thermostat opening temperature, the thermostat valve will open. The coolant is then allowed to circulate through the thermostat to the radiator where the engine heat is dissipated to the atmosphere. The thermostat also provides a restriction in the cooling system, even after it has opened. This restriction creates a pressure difference which prevents cavitation at the water pump and forces coolant to circulate through the engine block.

Engine Oil Heat Exchanger (LAU)

The engine oil heat exchanger is mounted to the side of the engine block. Oil is pumped through the oil cooler heat exchanger then back through the engine for lubrication.

Transmission Oil Cooler

The transmission oil cooler is a heat exchanger located in the side tank of the radiator. The transmission oil temperature is regulated by the temperature of the coolant leaving the radiator and passing over the heat exchanger. Lines from the transmission bring oil pumped at a high pressure to the cooler and back to the transmission.

Transmission Oil Cooler Lines

The transmission oil cooler is an oil-to-air heat exchanger located between the transmission and the radiator. Lines from the transmission bring oil pumped to the cooler and back to the transmission. A thermal bypass valve provides uninterrupted transmission oil flow for low ambient temperature conditions.

Power Steering Oil Cooler

Vehicles are equipped with a power steering oil cooler. This cooler transfers heat from the power steering system to the air passing over the cooler.