Operation CHARM: Car repair manuals for everyone.

P2247



DTC P2243 or P2247

Circuit Description

The wide band heated oxygen sensor (HO2S) measures the amount of oxygen in the exhaust system and provides more information than the switching style HO2S. The wide band sensor consists of an oxygen sensing cell, an oxygen pumping cell, and a heater. The exhaust gas sample passes through a diffusion gap between the sensing cell and the pumping cell. The engine control module (ECM) supplies a voltage to the HO2S and uses this voltage as a reference to the amount of oxygen in the exhaust system. An electronic circuit within the ECM controls the pump current through the oxygen pumping cell in order to maintain a constant voltage in the oxygen sensing cell. The ECM monitors the voltage variation in the sensing cell and attempts to keep the voltage constant by increasing or decreasing the amount of current flow, or oxygen ion flow, to the pumping cell. By measuring the amount of current required to maintain the voltage in the sensing cell, the ECM can determine the concentration of oxygen in the exhaust. The HO2S voltage is displayed as a lambda value. A lambda value of 1 is equal to a stoichiometric air fuel ratio of 14.7:1. Under normal operating conditions, the lambda value will remain around 1. When the fuel system is lean, the oxygen level will be high and the lambda signal will be high or more than 1. When the fuel system is rich, the oxygen level will be low, and the lambda signal will be low or less than 1. The ECM uses this information to maintain the correct air/fuel ratio.

DTC Descriptors

This diagnostic procedure supports the following DTCs:

* DTC P2243 HO2S Reference Voltage Circuit Bank 1 Sensor 1
* DTC P2247 HO2S Reference Voltage Circuit Bank 2 Sensor 1

Conditions for Running the DTC

* Before the ECM can report DTC P2243 or P2247 failed, DTC P0030, P0031, P0032, P0050, P0051, and P0052 must run and pass.
* The engine is operating for more than 2 seconds.
* The ignition 1 voltage is between 10.7-18 volts.
* The internal HO2S sensing element resistance is more than 570 ohms.
* The HO2S heater is at operating temperature for more than 20 seconds.
* DTC P2243 and P2247 run continuously once the above conditions are met.

Conditions for Setting the DTC

The ECM detects the internal HO2S signal voltage is less than 0.2 volt or more than 4.7 volts for more than 1 second.

Action Taken When the DTC Sets

* The control module illuminates the malfunction indicator lamp (MIL) on the second consecutive ignition cycle that the diagnostic runs and fails.
* The control module records the operating conditions at the time the diagnostic fails. The first time the diagnostic fails, the control module stores this information in the Failure Records. If the diagnostic reports a failure on the second consecutive ignition cycle, the control module records the operating conditions at the time of the failure. The control module writes the operating conditions to the Freeze Frame and updates the Failure Records.

Conditions for Clearing the MIL/DTC

* The control module turns OFF the malfunction indicator lamp (MIL) after 4 consecutive ignition cycles that the diagnostic runs and does not fail.
* A current DTC, Last Test Failed, clears when the diagnostic runs and passes.
* A history DTC clears after 40 consecutive warm-up cycles, if no failures are reported by this or any other emission related diagnostic.
* Clear the MIL and the DTC with a scan tool.

Diagnostic Aids

* The front wide band sensors do not toggle or switch like a switching HO2S. The front HO2S signals will be relatively stable for an idling engine.
* Use the J 35616 Connector Test Adapter Kit for any test that requires probing the ECM harness connector or a component harness connector.
* The lower connector of the ECM is connector C1 and the upper connector of the ECM is connector C2. Refer to Engine Controls Component Views.
* For an intermittent condition, refer to Intermittent Conditions. Intermittent Conditions




* The table illustrates the typical voltages for the HO2S circuits.

Test Description

Step 1 - Step 10:




Step 11 - Step 12:




The numbers below refer to the step numbers on the diagnostic table.
2. This step determines if the condition exists. If there is a condition with the HO2S circuits, the ECM commands open loop for the applicable sensor.
5. This step tests for a bias voltage across the reference voltage circuit and the low reference circuit of the HO2S. The bias voltage that you are measuring, is the voltage difference between the reference voltage circuit and the low reference circuit. If there is a condition with the reference voltage circuit or the low reference circuit of the HO2S, the bias voltage will be more than the specified value, which indicates there is a condition with the circuits.