Operation CHARM: Car repair manuals for everyone.

Part 3 of 4

Fig. 14 Wiper Arm:




WIPER ARM
The wiper arms are the rigid members located between the wiper pivots that protrude from the cowl plenum cover/grille panel near the base of the windshield and the wiper blades on the windshield glass. These wiper arms feature an over-center hinge that allows easy access to the windshield glass for cleaning. The wiper arm has a die cast metal pivot end with a large internally serrated socket formation at one end. A key within the socket formation indexes the wiper arm to a keyway in the pivot shaft of the wiper module to provide wiper alignment, and a spring-loaded latch on the underside of the wiper arm pivot end locks the unit to the pivot shaft when it is fully installed. The right and left wiper arms for this model are not interchangeable, as the right wiper arm is slightly longer than the left one.

The wide end of a tapered, stamped steel channel hinges on and is secured with a hinge pin to the blade end of the wiper arm pivot end. One end of a long, rigid, stamped steel strap, with a small hole near its pivot end, is riveted and crimped within the narrow end of the stamped steel channel. The tip of the wiper blade end of this strap is bent back under itself to form a small hook. Concealed within the stamped steel channel, one end of a long spring is engaged with a wire hook on the underside of the die cast pivot end, while the other end of the spring is hooked through the small hole in the steel strap. The entire wiper arm has a satin black finish applied to all of its visible surfaces.

A wiper arm cannot be adjusted or repaired. If damaged or faulty, the entire wiper arm unit must be replaced.

The wiper arms are designed to mechanically transmit the motion from the wiper pivots to the wiper blades. The wiper arm must be properly indexed to the wiper pivot in order to maintain the proper wiper blade travel on the glass. The serrated and keyed socket formation in the wiper arm pivot end interlocks with the serrations and keyway on the outer circumference of the wiper pivot shaft, providing positive engagement and alignment of this connection. The latch positively locks the wiper arm to the wiper pivot shaft when the arm is fully installed. The spring-loaded wiper arm hinge controls the down-force applied through the tip of the wiper arm to the wiper blade on the glass. The hook formation on the tip of the wiper arm provides a cradle for securing and latching the wiper blade pivot block to the wiper arm.

Fig. 16 Wiper Blade:




WIPER BLADE
Each wiper blade is secured by an integral latching pivot block to the hook formation on the tip of each wiper arm, and rests on the glass near the base of the windshield when the wipers are not in operation. The wiper blade consists of the following components:
- Superstructure - The superstructure includes several stamped steel bridges and links with claw formations that grip the wiper blade element. Also included in this unit is the latching, molded plastic pivot block that secures the superstructure to the wiper arm. All of the metal components of the wiper blade have a satin black finish applied.

- Element - The wiper element or squeegee is the resilient rubber member of the wiper blade that contacts the glass.

- Flexor - The flexor is a rigid metal component running along the length of each side of the wiper element where it is gripped by the claws of the superstructure.

All models have two 60.00 centimeter (23.62 inch) long wiper blades with non-replaceable rubber elements (squeegees). The wiper blades cannot be adjusted or repaired. If faulty, worn, or damaged the entire wiper blade unit must be replaced.

The wiper blades are moved back and forth across the glass by the wiper arms when the wipers are being operated. The wiper blade superstructure is the flexible frame that grips the wiper blade element and evenly distributes the force of the spring-loaded wiper arm along the length of the element. The combination of the wiper arm force and the flexibility of the superstructure makes the element conform to and maintain proper contact with the glass, even as the blade is moved over the varied curvature that may be encountered across the glass surface. The wiper element flexor provides the claws of the blade superstructure with a rigid, yet flexible component on the element which can be gripped. The rubber element is designed to be stiff enough to maintain an even cleaning edge as it is drawn across the glass, yet resilient enough to conform to the glass surface and flip from one cleaning edge to the other each time the wiper blade changes directions.

Fig. 18 ISO Micro Relay:




WIPER HIGH/LOW RELAY
The wiper high/low relay is located in the Integrated Power Module (IPM) in the engine compartment near the battery. The wiper high/low relay is a conventional International Standards Organization (ISO) micro relay. Relays conforming to the ISO specifications have common physical dimensions, current capacities, terminal patterns, and terminal functions. The relay is contained within a small, rectangular, molded plastic housing and is connected to all of the required inputs and outputs by five integral male spade-type terminals that extend from the bottom of the relay base.

The wiper high/low relay cannot be adjusted or repaired and, if faulty or damaged, the unit must be replaced.

The wiper high/low relay is an electromechanical switch that uses a low current input from the Front Control Module (FCM) to control a high current output to the wiper motor. The movable common feed contact point is held against the fixed normally closed contact point by spring pressure. When the relay coil is energized, an electromagnetic field is produced by the coil windings. This electromagnetic field draws the movable relay contact point away from the fixed normally closed contact point, and holds it against the fixed normally open contact point. When the relay coil is de-energized, spring pressure returns the movable contact point back against the fixed normally closed contact point. A resistor is connected in parallel with the relay coil in the relay, and helps to dissipate voltage spikes and electromagnetic interference that can be generated as the electromagnetic field of the relay coil collapses.

The wiper high/low relay terminals are connected to the vehicle electrical system through a connector receptacle in the Integrated Power Module (IPM). The inputs and outputs of the wiper high/low relay include:
- Common Feed Terminal - The common feed terminal (30) is connected to the output of the wiper ON/OFF relay at all times through the wiper ON/OFF relay output circuit.

- Coil Ground Terminal - The coil ground terminal (85) is connected to a control output of the Front Control Module (FCM) through a wiper high/low relay control circuit. The FCM controls wiper motor operation by controlling a ground path through this circuit.

- Coil Battery Terminal - The coil battery terminal (86) receives battery current when the ignition switch is in the ON or Accessory positions from a fuse in the Integrated Power Module (IPM) through a fused ignition switch output (run-acc) circuit.

- Normally Open Terminal - The normally open terminal (87) is connected to the high speed brush of the wiper motor through a wiper high/low relay high speed output circuit, and is connected to the high speed brush whenever the relay is energized.

- Normally Closed Terminal - The normally closed terminal (87A) is connected to the low speed brush of the wiper motor through a wiper high/low relay low speed output circuit, and is connected to the low speed brush whenever the relay is de-energized.

The wiper high/low relay can be diagnosed using conventional diagnostic tools and methods. However, conventional diagnostic methods may not prove conclusive in the diagnosis of the instrument cluster, the Front Control Module (FCM), or the electronic message inputs to or outputs from the instrument cluster and the FCM that control the operation of the wiper high/low relay. The most reliable, efficient, and accurate means to diagnose the wiper high/low relay, the instrument cluster, the FCM, or the electronic message inputs and outputs related to the wiper high/low relay operation requires the use of a DRB III scan tool. Refer to the appropriate diagnostic information.