P0031
DTC P0031 OXYGEN (A/F) SENSOR HEATER CONTROL CIRCUIT LOW (BANK 1 SENSOR 1)HINT: Although each DTC title (DTC description) says "oxygen sensor", these DTCs are related to the "A/F sensor".
CIRCUIT DESCRIPTION
DTC Detection Condition:
The A/F sensor generates a voltage* that corresponds to the actual air-fuel ratio. This sensor voltage is used to provide the ECM with feedback so that it can control the air-fuel ratio. The ECM determines the deviation from the stoichiometric air-fuel ratio level, and regulates the fuel injection time. If the A/F sensor malfunctions, the ECM is unable to control the air-fuel ratio accurately.
The A/F sensor is the planar type and is integrated with the heater, which heats the solid electrolyte (zirconia element). This heater is controlled by the ECM. When the intake air volume is low (the exhaust gas temperature is low), a current flows into the heater to heat the sensor, in order to facilitate accurate air-fuel ratio detection. In addition, the sensor and heater portions are narrower than the conventional type. The heat generated by the heater is conducted to the solid electrolyte though the alumina, therefore the sensor activation is accelerated.
In order to obtain a high purification rate of the carbon monoxide (CO), hydrocarbon (HC) and nitrogen oxide (NOx) components in the exhaust gas, a TWC is used. For the most efficient use of the TWC, the air-fuel ratio must be precisely controlled so that it is always close to the stoichiometric level.
*: Value changes inside the ECM. Since the A/F sensor is the current output element, a current is converted to a voltage inside the ECM. Any measurements taken at the A/F sensor or ECM connectors will show a constant voltage.
HINT: The ECM provides a pulse width modulated control circuit to adjust current through the heater. The A/F sensor heater circuit uses a relay on the B+ side of the circuit.
HINT:
- Bank 1 refers to the bank that includes cylinder No.1.
- Bank 2 refers to the bank that does not include cylinder No.1.
- Sensor 1 refers to the closest sensor to the engine assembly.
- Sensor 2 refers to the farthest sensor from the engine assembly.
MONITOR DESCRIPTION
Monitor Strategy:
Typical Enabling Conditions:
Typical Malfunction Thresholds:
Component Operating Range:
The ECM uses the Air-Fuel Ratio sensor (A/F sensor) information to regulate the air-fuel ratio close to the stoichiometric ratio. This maximizes the catalytic converter's ability to purify exhaust gases. The sensor detects oxygen levels in the exhaust gas and sends this signal to the ECM.
The inner surface of the sensor element is exposed to outside air. The outer surface of the sensor element is exposed to exhaust gas. The sensor element is made of platinum coated zirconia and includes an integrated heating element. The zirconia element generates a small voltage when there is a large difference in the oxygen concentrations of the exhaust and the outside air. The platinum coating amplifies the voltage generation. When heated, the sensor becomes very efficient. If the temperature of the exhaust is low, the sensor will not generate useful voltage signals without supplemental heating. The ECM regulates the supplemental heating using a duty-cycle approach to regulate the average current in the heater element. If the heater current is out of the normal range, the sensor's output signals will be inaccurate and the ECM can not regulate the sir-fuel ratio properly.
When the heater current is out of the normal operating range, the ECM interprets this as a malfunction and sets a DTC.
MONITOR RESULT
Refer to Checking Monitor Status for detailed information.
The test value and test limit information are described as shown in the table. Check the monitor result and test values after performing the monitor drive pattern.
- TID (Test Identification Data) is assigned to each emissions-related component.
- TLT (Test Limit Type):
If TLT is 0, the component is malfunctioning when the test value is higher than the test limit.
If TLT is 1, the component is malfunctioning when the test value is lower than the test limit.
- CID (Component Identification Data) is assigned to each test value.
- Unit Conversion is used to calculate the test value indicated on generic OBD II scan tools.
Wiring Diagram:
Step 1:
Step 2 - 3:
Step 4:
INSPECTION PROCEDURE
HINT: Read freeze frame data using a hand-held tester. Freeze frame data record the engine condition when malfunctions are detected. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air-fuel ratio was lean or rich, and other data, from the time the malfunction occurred.
CHECK FOR INTERMITTENT PROBLEMS
HINT:
Hand-held tester only:
Inspect the vehicle's ECM using check mode. Intermittent problems are easier to detect when the ECM is in check mode with a hand-held tester. In check mode, the ECM uses 1 trip detection logic, which has a higher sensitivity to malfunctions than normal mode (default) using 2 trip detection logic.
a. Clear the DTCs.
b. Switch the hand-held tester from normal mode to check mode.
c. Perform a simulation test.
d. Check the connector(s) and terminal(s).
e. Wiggle the harness(s) and connector(s).